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West Antarctica, and the Amundsen sector in particular, is the largest potential contributor to sea level rise (SLR) in the next future according to et . .
recent climate projections. Most of the glaciers in this region, presenting Marine Ice Sheet instability (MISI), are suggested to be strongly 0-5 Change in. VAF per year 0.5 Change in VAF per year comparison
affected by ice-ocean interactions. However, some of those processes are not completely well understood yet and the estimates of the SLR are | | - SSA steady state presents an
still very uncertain. The efforts in SLR predictions are recently more focused on the coupling of standalone ice and ocean models and the 0.0 | 00 : slightly upper GL in the retrograde slope
emergent properties of the new coupled systems. In this context, and following previous model inter-comparison MISMIP and MISMIP3D, a ! ' : - SSA Star produces faster retreat
new set of experiments have been designed. This new generation of MIP’s, with an idealized geometry based on a typical Amundsen Sea | | than SSA
configuration, aim to investigate a number of processes related to the interactions between the two components of the ice-ocean coupled -0.5 | -0.5 i - Re-advance is almost similar in
system. Three different MIP’s have been proposed: for the ice-sheet model (MISMIP+), the ocean model (ISOMIP+), or for the coupling of both ! ! both cases
components (MISOMIP). Here we discuss the results a different features concerning the ice-sheet model Elmerlce fof MISMIP+ and the ocean ! :
model NEMO for the test for ISOMIP+. -1.0 | -1.0 ! --VVAF change
I : - VAF changes in two linear regimes
Elmerlce in the context of MISMIP+ at LGGE -15 o sSAsPowerlaw LS e SSA4Schoot  (nOtShOWN)
| . e - Firstly: 10 years of strong constant
Resolution at the grounding line of 500m with and 0.1 yr of timestep | SSA+Schoof o oEne0 acceleration retreat. Transient cavity
i : -2.0 ' -2. '
Stress Approximation: SSA and SSAStar (Full Stokes not performed yet). 0 50 100 150 200 %" 50 100 150 ,0o draftchange.

. - Secondly: Linear VAF change. At
Friction Law: Power Law and Schoof Law (parameters by default of the MIP) ICE1R ICE1A ICE1R ICE1A this stage, not sure if related to the
Grounding Line: Hydrostatic approximation with sub-element parameterization of the basal friction (SEP3 in [1]) 2000 =0 2000 t =100 yrs reduced bedrock slope or because the
Stabilization: The computation of the advection of the ice in FEM requires a Petrov-Galerkin formulation in order to avoid the spurious —  SSA+Power Law ————  SSA+PowerLaw CONStant cavity draft
oscillatory solutions. 1900 SSA+Schoof 1500 e SSA+Schoof

Bubbles method is not efficient at the fast part of the glacier with very steep slope. m— GG AStar+Schoof . .

Stabilized formulation SUPG gives much smoother results in the fast parts with an advection-dominant limit applied as defined in (2). 1000 1000 --Initial and final drafts:
However, transienI simulations needs some_e_xIra stabilization in the inflow boundary (very slow ice) where the trgn§ient-dominant limit sh.ould _- Choice in friction law matters more
be preferably applied (see eq. below). Sensitivity tests re%%@ingend the use of a=1000 to have a good balanced limit between the two regimes. 500 500 than in the the stress approximation
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OCEANS3 test (moving ice draft boundary)

NEMO_3.6/3.7 Z*-coordinate with partial steps ISOMIP+ Results

Moving Boundaries: P— P— t=12 yrs
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Test OCEANS3: Moving cavity

- Coupling frequency: 6 months

- T,S in new ice-free cells are extrapolated from closest cell (horizontally if possible)

- U and V in ice-free cells are first set to zero. Then, a barotropic correction of U and V is applied to conserve the barotropic transport.
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- If a full water column is open, SSH is interpolated from the closest cells
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-- Integrated melt rates depends
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| R 0 Temper:tfjxg(zn},’“res .- Melt(z) is not constant
o 1 2 s 4 5 6 7 8 9 10 1 1 volume, heat &salt < Ocean3-COM  12/0100 | T | ' T throughout the experiment, which
time (months) 315 i T ; ) 1 100 E T -100 | emphaSIZeS the need for ice-sheet/
® I L K ocean coupling and the limitation of
Salt content anomaly ' H . ® 10 12 1 | _ _ _ _
800 ' : ' ' ' : ' ' ' ' Specific tests performed: % I : | : : 1-300} iImposing constant melt functions as in
s S00T --No far-field restoring, = 5 T~ I | : MISMIP+.
= 400 | = [ T T T Ly
S 3000 --No melting g0 B e b I
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As shown, there is conservation in volume and salt. w0 AN Am N T T TR
A . ... o s i, A Spurious velocities may appear just after coupling. Not clear if
_agl y related to coupling method or correction method. They remain small References
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